77 research outputs found

    Intrinsically-generated fluctuating activity in excitatory-inhibitory networks

    Get PDF
    Recurrent networks of non-linear units display a variety of dynamical regimes depending on the structure of their synaptic connectivity. A particularly remarkable phenomenon is the appearance of strongly fluctuating, chaotic activity in networks of deterministic, but randomly connected rate units. How this type of intrinsi- cally generated fluctuations appears in more realistic networks of spiking neurons has been a long standing question. To ease the comparison between rate and spiking networks, recent works investigated the dynami- cal regimes of randomly-connected rate networks with segregated excitatory and inhibitory populations, and firing rates constrained to be positive. These works derived general dynamical mean field (DMF) equations describing the fluctuating dynamics, but solved these equations only in the case of purely inhibitory networks. Using a simplified excitatory-inhibitory architecture in which DMF equations are more easily tractable, here we show that the presence of excitation qualitatively modifies the fluctuating activity compared to purely inhibitory networks. In presence of excitation, intrinsically generated fluctuations induce a strong increase in mean firing rates, a phenomenon that is much weaker in purely inhibitory networks. Excitation moreover induces two different fluctuating regimes: for moderate overall coupling, recurrent inhibition is sufficient to stabilize fluctuations, for strong coupling, firing rates are stabilized solely by the upper bound imposed on activity, even if inhibition is stronger than excitation. These results extend to more general network architectures, and to rate networks receiving noisy inputs mimicking spiking activity. Finally, we show that signatures of the second dynamical regime appear in networks of integrate-and-fire neurons

    Response of a Hexagonal Granular Packing under a Localized External Force

    Get PDF
    We study the response of a two-dimensional hexagonal packing of rigid, frictionless spherical grains due to a vertically downward point force on a single grain at the top layer. We use a statistical approach, where each configuration of the contact forces is equally likely. We show that this problem is equivalent to a correlated qq-model. We find that the response displays two peaks which lie precisely on the downward lattice directions emanating from the point of application of the force. With increasing depth, the magnitude of the peaks decreases, and a central peak develops. On the bottom of the pile, only the middle peak persists. The response of different system sizes exhibits self-similarity.Comment: 4 pages, 9 figures, 2 colour figure, plot of standard deviation added, discussion expande

    A geometrical analysis of global stability in trained feedback networks

    Get PDF
    Recurrent neural networks have been extensively studied in the context of neuroscience and machine learning due to their ability to implement complex computations. While substantial progress in designing effective learning algorithms has been achieved in the last years, a full understanding of trained recurrent networks is still lacking. Specifically, the mechanisms that allow computations to emerge from the underlying recurrent dynamics are largely unknown. Here we focus on a simple, yet underexplored computational setup: a feedback architecture trained to associate a stationary output to a stationary input. As a starting point, we derive an approximate analytical description of global dynamics in trained networks which assumes uncorrelated connectivity weights in the feedback and in the random bulk. The resulting mean-field theory suggests that the task admits several classes of solutions, which imply different stability properties. Different classes are characterized in terms of the geometrical arrangement of the readout with respect to the input vectors, defined in the high-dimensional space spanned by the network population. We find that such approximate theoretical approach can be used to understand how standard training techniques implement the input-output task in finite-size feedback networks. In particular, our simplified description captures the local and the global stability properties of the target solution, and thus predicts training performance

    Correlations between synapses in pairs of neurons slow down dynamics in randomly connected neural networks

    Full text link
    Networks of randomly connected neurons are among the most popular models in theoretical neuroscience. The connectivity between neurons in the cortex is however not fully random, the simplest and most prominent deviation from randomness found in experimental data being the overrepresentation of bidirectional connections among pyramidal cells. Using numerical and analytical methods, we investigated the effects of partially symmetric connectivity on dynamics in networks of rate units. We considered the two dynamical regimes exhibited by random neural networks: the weak-coupling regime, where the firing activity decays to a single fixed point unless the network is stimulated, and the strong-coupling or chaotic regime, characterized by internally generated fluctuating firing rates. In the weak-coupling regime, we computed analytically for an arbitrary degree of symmetry the auto-correlation of network activity in presence of external noise. In the chaotic regime, we performed simulations to determine the timescale of the intrinsic fluctuations. In both cases, symmetry increases the characteristic asymptotic decay time of the autocorrelation function and therefore slows down the dynamics in the network.Comment: 17 pages, 7 figure

    Instability to a heterogeneous oscillatory state in randomly connected recurrent networks with delayed interactions

    Get PDF
    Oscillatory dynamics are ubiquitous in biological networks. Possible sources of oscillations are well understood in low-dimensional systems, but have not been fully explored in high-dimensional networks. Here we study large networks consisting of randomly coupled rate units. We identify a novel type of bifurcation in which a continuous part of the eigenvalue spectrum of the linear stability matrix crosses the instability line at non-zero-frequency. This bifurcation occurs when the interactions are delayed and partially anti-symmetric, and leads to a heterogeneous oscillatory state in which oscillations are apparent in the activity of individual units, but not on the population-average level

    The computational role of structure in neural activity and connectivity

    Full text link
    One major challenge of neuroscience is finding interesting structures in a seemingly disorganized neural activity. Often these structures have computational implications that help to understand the functional role of a particular brain area. Here we outline a unified approach to characterize these structures by inspecting the representational geometry and the modularity properties of the recorded activity, and show that this approach can also reveal structures in connectivity. We start by setting up a general framework for determining geometry and modularity in activity and connectivity and relating these properties with computations performed by the network. We then use this framework to review the types of structure found in recent works on model networks performing three classes of computations

    Interpreting neural computations by examining intrinsic and embedding dimensionality of neural activity

    Full text link
    The current exponential rise in recording capacity calls for new approaches for analysing and interpreting neural data. Effective dimensionality has emerged as a key concept for describing neural activity at the collective level, yet different studies rely on a variety of definitions of it. Here we focus on the complementary notions of intrinsic and embedding dimensionality, and argue that they provide a useful framework for extracting computational principles from data. Reviewing recent works, we propose that the intrinsic dimensionality reflects information about the latent variables encoded in collective activity, while embedding dimensionality reveals the manner in which this information is processed. Network models form an ideal substrate for testing more specifically the hypotheses on the computational principles reflected through intrinsic and embedding dimensionality

    A Complex-Valued Firing-Rate Model That Approximates the Dynamics of Spiking Networks

    Get PDF
    Firing-rate models provide an attractive approach for studying large neural networks because they can be simulated rapidly and are amenable to mathematical analysis. Traditional firing-rate models assume a simple form in which the dynamics are governed by a single time constant. These models fail to replicate certain dynamic features of populations of spiking neurons, especially those involving synchronization. We present a complex-valued firing-rate model derived from an eigenfunction expansion of the Fokker-Planck equation and apply it to the linear, quadratic and exponential integrate-and-fire models. Despite being almost as simple as a traditional firing-rate description, this model can reproduce firing-rate dynamics due to partial synchronization of the action potentials in a spiking model, and it successfully predicts the transition to spike synchronization in networks of coupled excitatory and inhibitory neurons

    Aligned and oblique dynamics in recurrent neural networks

    Full text link
    The relation between neural activity and behaviorally relevant variables is at the heart of neuroscience research. When strong, this relation is termed a neural representation. There is increasing evidence, however, for partial dissociations between activity in an area and relevant external variables. While many explanations have been proposed, a theoretical framework for the relationship between external and internal variables is lacking. Here, we utilize recurrent neural networks (RNNs) to explore the question of when and how neural dynamics and the network's output are related from a geometrical point of view. We find that RNNs can operate in two regimes: dynamics can either be aligned with the directions that generate output variables, or oblique to them. We show that the magnitude of the readout weights can serve as a control knob between the regimes. Importantly, these regimes are functionally distinct. Oblique networks are more heterogeneous and suppress noise in their output directions. They are furthermore more robust to perturbations along the output directions. Finally, we show that the two regimes can be dissociated in neural recordings. Altogether, our results open a new perspective for interpreting neural activity by relating network dynamics and their output.Comment: 52 pages, 29 figures, submitted for revie
    corecore